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1 Introduction

This report presents an overview of the work carried out during my internship at the Department of Computer
Science, Sapienza University, under the supervision of Professor Enrico Tronci.

During a 10-day advanced research internship at the Department of Computer Science at Sapienza
University in Italy, funded by the Higher School of Computer Science in Sidi Bel Abbès, Algeria, I conducted
research to further our work, which involves combining model checking and testing techniques to enhance
error localization in an imperative program.

Debugging software can be time-consuming, particularly when pinpointing faulty instructions. Acceler-
ating fault localization can significantly reduce costs and enhance software quality. Current state-of-the-art
research primarily revolves around two categories of approaches: spectrum-based and model-checking-based
methods for fault localization. We have introduced a novel approach that integrates model checking and
testing to enhance fault localization effectiveness. Our approach employs model checking to minimize the
number of suspicious instructions identified from each failing test (counterexample), thereby reducing cov-
erage of non-faulty statements. The fundamental concept is to narrow down failing test cases using model
checking prior to spectrum-based fault localization.

The objective of the research are as follows: To conduct experiments on an approach integrating model
checking and spectrum-based fault localization.

The scope of the research involves:

• Addressing the research within the context of software fault localization and improvement methodolo-
gies.

• Developing and experimenting with our approach that integrates model checking and spectrum-based
fault localization.

• Conducting experiments on the TCAS benchmark from the Siemens test suite.

• Using multiple counterexamples in the experiments to evaluate the effectiveness of the proposed ap-
proach.

• Comparing the proposed approach with traditional spectrum-based fault localization approaches.

• Showcasing the importance of using multiple counterexamples compared to using a single counterex-
ample in our approach.

2 Background

The Department of Computer Science at Sapienza University, known as ”Dipartimento di Informatica” in
Italian, is one of the leading institutions in Italy and Europe in the field of computer science research and
education. Located in Rome, Italy, Sapienza University itself is one of the oldest and largest universities in
Europe, dating back to 1303.

During my internship, I conducted experiments on our approach integrating model checking and spectrum-
based fault localization on the TCAS benchmark from the Siemens test suite [7], using multiple counterex-
amples. It is worth noting that in our paper [2] for the CSA 2024 conference held on April 23-24, 2024, in
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Algiers, Algeria (http://www.emp.mdn.dz/events/csa/index.html), we experimented with our approach
integrating model checking and spectrum-based fault localization, but considering only one counterexample
for each erroneous version in the TCAS benchmark. We compared our approach with traditional spectrum-
based fault localization approaches.

I worked under the supervision of Prof. Enrico Tronci, who serves as the head of the Department of
Computer Science at Sapienza University. Prof. Tronci has extensive experience in Formal Verification of
Cyber-Physical Systems and Model Checking. Throughout my internship, Prof. Tronci provided me with
guidance, mentorship, and support.

3 Related Work

Numerous studies have been conducted to aid in fault localization within imperative programs. We present
key methodologies in model checking and testing.

Model Checking-based Fault Localization Model checking assesses program adherence to a specifica-
tion by traversing states. Various techniques have been proposed, including Explain [11, 10], BugAssist [14],
SNIPER [15, 16], LocFaults [4, 3], and others. Most model checking-based approaches simplify fault local-
ization to diagnosing an inconsistent system of constraints.

Spectrum-based Fault Localization Spectrum-based approaches utilize ranking metrics to assess the
suspicion levels of program elements. Several techniques have been proposed, including Tarantula [13, 12],
Ochiai [1], FLCN [20], ConsilientSFL [17], and others. These approaches generally follow the same principle,
with the main difference being the ranking metrics used.

4 Results

To evaluate our approach combing Model Checking and Testing, experiments were conducted using Siemens’
TCAS benchmark suite, which is well-known for bug localization studies [18, 12, 9, 14, 16, 5, 21, 8, 17].
This suite simulates an aircraft collision avoidance system, consisting of 173 lines of code spread across 41
versions, each containing realistic faults. Versions v33 and v38, which exhibited array index out-of-bounds
errors, were excluded from the analysis. These errors differ from postcondition violations and have not been
addressed. The TCAS benchmark includes a total of 1068 test cases.

In our implementation, BugAssist [14] identifies suspicious instructions in the faulty program using mul-
tiple counterexamples. This constitutes the primary contribution of our work in the internship compared to
the research presented at the CSA 2024 conference [2], which employs only a single counterexample for each
erroneous TCAS version. By leveraging multiple counterexamples, BugAssist is executed for each TCAS
version, utilizing each of its counterexamples to calculate suspicious instructions for every erroneous version,
for every counterexample. The counterexamples for each erroneous version are obtained by assessing the
equality of the output of the erroneous version with that of the correct version across all test cases (a total
of 1068 test cases). If the output is not equal, the respective test case is identified as a counterexample;
otherwise, the test case is considered successful.

The instructions of each erroneous version are then classified using suspicious instructions obtained from
each counterexample, successful test cases and Ochiai spectral metric, assigning suspicious degrees based on
their coverage. We compared ours result with those from a testing-only approach using Ochiai Tarantula,
and EWSR spectral formulas. Only one faulty instruction is presented for debugging. Instructions are
ranked based on suspicion degree, with tie elements addressed by considering the average position using
Equation 1 [19]:

MID = S +

�
E − 1

2

�
(1)

The spectral data is used with a formula (e.g., Tarantula, Ochiai, EWSR) to quantify suspicion level for
each potentially faulty element (see Table 1).
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Table 1: Ochiai and Tarantula, and EWSR Spectral Formulas Along with Their Equations

Ochiai [1]
efp

(ef + nf ) · (ef + ep)

Tarantula [13, 12]

ef
ef + nf

ef
ef + nf

+
ep

ep + np

EWSR [2]
ef × np + nf × ep

ef × np + nf × ep + ef × ep + nf × np
× 1p

(ef + ep)× (nf + np)

Frequently, a formula is articulated using four counters, which are computed from the spectra in the
following manner:

• ef : the count of statement executions (e) in failed tests.

• ep: the count of statement executions (e) in passed tests.

• nf : the count of statement non-executions (n) in failed tests.

• np: the count of statement non-executions (n) in passed test cases.

Our approach calculates the program spectrum using both failed and successful test cases. For failed
cases, covered code lines are those in the set of suspicious instructions. Spectral metrics prioritize faulty
code lines, aiding developers in debugging.

Results from our TCAS benchmark experiments using multiple counterexamples are shown in Figure 1.
Each cluster of bars represents individual versions. The first three bars in each cluster denote average
positions of the considered faulty instruction using Ochiai, Tarantula, and EWSR spectral formulas for pure
spectrum-based fault localization. The fourth bar (MC+TEST) represents the average position using our
integrated approach combining model checking and testing, incorporating Ochiai spectral formula.

Across nearly all versions, Ochiai consistently outperforms Tarantula, indicating its superior accuracy
in fault localization. The Ochiai spectral formula typically yields moderate to high average positions for
the faulty instruction. Notable exceptions include versions v25, v36, and v41, where the average position is
notably lower. The Tarantula formula exhibits similar trends to Ochiai but performs less effectively, with
moderate to high average positions across most versions. Versions v25 and v36 stand out with uniformly
low average positions, indicating potentially less severe faults or fewer identified suspicious code lines.

The EWSR formula demonstrates relatively higher average positions compared to Ochiai and Tarantula,
suggesting a more conservative approach to fault localization. Similarly, versions v25 and v36 consistently
exhibit low average positions with EWSR, aligning with the observations from Ochiai and Tarantula.

The integrated approach consistently achieves lower average positions compared to pure spectrum-based
fault localization across all versions. This suggests that combining model checking and testing effectively
enhances fault localization accuracy. Notable improvements are observed in versions where pure spectrum-
based approaches yield high average positions, indicating that model checking contributes to enhancing
spectrum-based fault localization.

We recall that in Figure 1, we presented the position of the erroneous instruction for each erroneous
version in TCAS in the ranking returned by our integrated approach using multiple counterexamples. To
assess the significance of this improvement compared to what was presented in the CSA 2024 paper [2],
which involved using only one counterexample for each erroneous version, we calculated the position of the
erroneous instruction in the ranking obtained by our approach but using only one counterexample at a time.
Then, we calculated the average positions obtained for all counterexamples of each TCAS version (see bar 2
in each bar cluster in Figure 2 and the blue points in Figure 3). We compared this result with our approach
considering all counterexamples for each erroneous TCAS version at once (see bar 1 in each bar cluster
in Figure 2 and the red points in Figure 3). In Figure 3, we also showed the standard deviation for each
erroneous version, which quantifies the amount of spread or dispersion of the values (positions of the faulty
instruction in the output of our approach by considering one counterexample each time) around the average.
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Figure 3: Plot of Positions with Error Bars (Standard Deviation)

The figures 2 and 3 show that for most erroneous versions considered in our approach, using multiple
counterexamples at once yields a more accurate (inferior) ranking than considering only one counterexample
at a time. Figure 3 demonstrates that the standard deviation for each erroneous version is very small (except
for the case of v15) for the data representing the positions of the faulty instruction when considering one
counterexample at a time. From this figure, these positions are very close to the average (except for v15)
and then remain higher than the case when multiple counterexamples are used at once.

5 Enhancing program verification efficiency through parallel Model
Checking

To detect errors in a computer program and verify its conformity with its specification, the CPBPV tool [6]
(a Model Checker) transforms the program into a Control Flow Graph (CFG) and then explores this graph
path by path in depth. At the end of each path, CPBPV checks the conformity of the constraint system
corresponding to the path with the specification. If it is not conformant, the process ends and provides a
counterexample. Otherwise, CPBPV proceeds to the next path. If all paths have been explored without
finding any errors, then the program conforms to its specification.

Professor Enrico Tronci proposed integrating parallel computing into the CPBPV tool (Parallel Model
Checking) to accelerate the program verification process. Initially, we explore the paths sequentially (without
parallel computing) to enumerate the paths of the CFG. Then, we distribute the paths (constraint systems
of the paths) across multiple processors, each testing the conformity of the path with the specification in
parallel. If at least one processor detects errors, the process ends by providing a counterexample. Otherwise,
the program conforms to its specification.

This idea should be implemented and experimented with on several benchmarks to highlight the benefits
of parallel programming in model checking.

6 Internship Experience

During my internship at the Department of Computer Science, I had the opportunity to present a seminar
titled ”Model Checking-Enhanced Spectrum-Based Fault Localization,” which showcased the innovative
approach described in this report. Presenting this seminar was a highly beneficial experience, as it allowed
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me to share our research findings and engage in discussions with peers and faculty members. The feedback
received during the seminar helped refine our approach further and provided valuable insights for future
research directions.

Moreover, my experience at the Department of Computer Science, Sapienza University, was exceptionally
constructive. The department provided a stimulating academic environment, with access to cutting-edge
research facilities and resources. Working alongside Professor Enrico Tronci and other researchers was both
inspiring and enriching, as I had the opportunity to collaborate on various projects and learn from their
expertise. The supportive atmosphere fostered collaboration and innovation, contributing to my professional
growth and development as a researcher.

Overall, my internship experience at the Department of Computer Science, Sapienza University, was
immensely rewarding. It not only allowed me to contribute to cutting-edge research but also provided a
platform for personal and professional growth in a vibrant academic setting. I am grateful for the opportunity
and look forward to applying the knowledge and skills gained during this internship to future endeavors.

7 Conclusion

In conclusion, my internship at the Department of Computer Science, Sapienza University, provided valuable
insights into advanced research methodologies in computer science. Under the guidance of Professor Enrico
Tronci, I conducted experiments on integrating model checking and spectrum-based fault localization on the
TCAS benchmark from the Siemens test suite. This research aimed to enhance fault localization accuracy
in software debugging.

Throughout the internship, our research findings, initially presented at the CSA 2024 conference in
Algiers [2], Algeria, were further developed. We conducted a comprehensive comparison between our novel
approach and traditional spectrum-based fault localization methods, utilizing multiple counterexamples. Our
analysis revealed the remarkable effectiveness of our integrated method in achieving consistently lower average
positions of the faulty instruction across all versions of the TCAS benchmark. Notably, this integration of
model checking and testing exhibited promising results, especially in cases where conventional spectrum-
based approaches yielded higher average positions.

We highlighted the improvement achieved by using multiple counterexamples simultaneously compared to
using a single counterexample at a time in our approach. The results on the TCAS benchmark demonstrated
that this enhancement leads to more accurate rankings of the faulty instruction in most cases.

Furthermore, the exploration of parallel Model Checking offers exciting prospects for enhancing program
verification efficiency. Professor Enrico Tronci’s proposal to integrate parallel computing into the CPBPV
tool presents a compelling avenue to expedite the verification process, potentially revolutionizing software
engineering practices. By leveraging parallelism to distribute path exploration across multiple processors,
this approach has the potential to significantly reduce verification times, particularly for intricate systems.

The Computer Science Department at Sapienza University provided a collaborative environment where
I worked with Model Checking experts. This experience enhanced my skills and theoretical understanding,
fostering my growth as a researcher.
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